Unique insights through graph databases

Graph databases equip companies with distinctive insights, fostering a significant competitive edge.

Note: This reference dates from before the merger and was created by X-INTEGRATE – now part of ATVANTAGE. Our experience remains the same – only our name has changed. You can find more information about the merger here.

Unleash new Opportunities with Graph Databases

In the ever-evolving landscape of technology, businesses are constantly seeking innovative solutions to stay ahead. One such game-changer is the use of graph databases. Let us have a look at the immense opportunities that graph databases present.

The Power of Graph Databases

Graph databases, unlike traditional relational databases, are designed to treat relationships between data as equally important as the data itself. This structure allows for high-performance querying and makes them ideal for managing interconnected data.

From social networks to recommendation engines, and from fraud detection to knowledge graphs, graph databases are transforming the way we understand and utilize data. They offer the ability to uncover patterns that are difficult to detect using traditional databases, providing businesses with unique insights and competitive advantages.

Generative AI with RAG and Graph Databases

One of the most recent applications of graph databases lies in the realm of Generative AI. Specifically, Retrieval-Augmented Generation (RAG) models can leverage graph databases as their knowledge store.

When it comes to harnessing the power of Large Language Models (like GPT) in a business setting, we often encounter two main hurdles:

  • Firstly, the issue of ‘hallucinations’, where the model generates information that isn’t based on any real data.
  • Secondly, the model’s lack of awareness about your company-specific data.

The good news is that both these challenges can be effectively tackled with the use of a graph database. By storing your unique data in the graph database, you can leverage the language capabilities of the Large Language Model to generate high-quality output. This approach is rooted in real data, eliminating the need for more complex and less effective methods like Fine-Tuning or In-Context-Learning.

RAG models combine the best of both worlds from retrieval-based and generative models. They retrieve relevant documents from a knowledge store and use them to inform a generative model. When the knowledge store is a graph database, the model can efficiently navigate through the interconnected data, retrieving highly relevant information. This results in more accurate, context-aware responses, opening up new possibilities for AI applications.

Source: Neo4j 2023 (GenAI Stack Walkthrough: Build With Neo4j, LangChain & Ollama in Docker)

Graph Data Science: A New Frontier

Graph databases also pave the way for Graph Data Science (GDS). This emerging field focuses on using graph theory to understand complex systems and solve challenging problems.

By representing data as nodes (entities) and edges (relationships), graph data science enables the analysis of relationships and patterns within the data. This can lead to more accurate predictions, better decision-making, and deeper insights. From detecting community structures in networks to predicting protein interactions in bioinformatics, graph data science is set to revolutionize numerous industries.

GDS employs a variety of graph algorithms to extract insights from data. These include:

Pathfinding and search algorithms

like Dijkstra’s and A*, which can find the shortest path between two nodes. These are useful in logistics and routing problems.

Centrality algorithms

like PageRank and Betweenness Centrality, which can identify influential nodes in a network. These are often used in social network analysis and SEO.

Community detection algorithms

like Louvain Modularity and Label Propagation, which can identify clusters or communities within a network. These are useful in understanding the structure of a network and detecting anomalies.

Conclusion

The adoption of graph databases presents a wealth of opportunities. By enabling more efficient data management, enhancing Generative AI, and powering the new field of graph data science, graph databases are set to play a pivotal role in the future of technology. Gartner predicts that “by 2025, graph technologies will be used in 80% of data and analytics innovations, up from 10% in 2021, facilitating rapid decision making across the enterprise” (Source: Gartner "Market Guide: Graph Database Management Solutions" Merv Adrian, Afraz Jaffri 30 August 2022). As a software consulting company, we are excited to help businesses harness these opportunities and drive innovation.

About the authors: Elena Kohlwey & Matthias Bauer

Elena Kohlwey has been a Data Scientist and Data Engineer at X-INTEGRATE (part of TIMETOACT GROUP) since 2024 and brings more than 5 years of expertise as a graph database expert. Her mission is to model networked data as a graph and use graph queries and algorithms to bring deeply hidden insights to the surface. Elena has been very active in the Neo4j (graph database provider) community for years. She regularly speaks at conferences on graph topics and is also one of the approximately 100 active Neo4j Ninjas worldwide.

Matthias Bauer has been Teamlead Data Science at X-INTEGRATE (part of TIMETOACT GROUP) since 2020 and brings more than 15 years of expertise as a Solution Architect. Using data to create great things and achieve added value - in his words: data thinking - is his passion. Matthias is experienced in artificial intelligence, data science and data management, covering a wide range of data-related issues from data warehousing to data virtualization.  

Elena Kohlwey
Data Scientist & Data Engineer X-INTEGRATE Software & Consulting GmbH
Matthias Bauer
CTO "Data Analytics & AI" ATVANTAGE GmbH

Feel free to contact us!

* required

We will only use the information you send us to contact you at your request in connection with your inquiry. You can find all further information in our Privacy Policy.

Solve captcha, please!

captcha image
Wissen 3/20/24

Unique insights through graph databases

Graph databases equip companies with distinctive insights, fostering a significant competitive edge.

Blog 7/23/24

Graph Databases in the Supply Chain

The supply chain is a complex network of suppliers, manufacturers, retailers and logistics service providers that ensure the flow of goods and information.

Wissen 4/30/24

GPT & Co: The best language models for digital products

Our analysis based on real benchmark data reveals which solutions excel in document processing, CRM integration, external integration, marketing support and code generation. Find your ideal model!

Wissen 4/30/24

LLM-Benchmarks April 2024

This LLM Leaderboard from april 2024 helps to find the best Large Language Model for digital product development.

Wissen 5/30/24

LLM-Benchmarks May 2024

This LLM Leaderboard from may 2024 helps to find the best Large Language Model for digital product development.

Wissen 6/30/24

LLM-Benchmarks June 2024

This LLM Leaderboard from june 2024 helps to find the best Large Language Model for digital product development.

Wissen 7/30/24

LLM-Benchmarks July 2024

This LLM Leaderboard from July 2024 helps to find the best Large Language Model for digital product development.

Wissen 4/30/24

GPT & Co: The best language models for digital products

Our analysis based on real benchmark data reveals which solutions excel in document processing, CRM integration, external integration, marketing support and code generation. Find your ideal model!

Headerbild Data Insights
Service

Data Insights

With Data Insights, we help you step by step with the appropriate architecture to use new technologies and develop a data-driven corporate culture

Blog 1/29/24

Database Analysis Report

This report comprehensively analyzes the auto parts sales database. The primary focus is understanding sales trends, identifying high-performing products, Analyzing the most profitable products for the upcoming quarter, and evaluating inventory management efficiency.

Blog 11/12/24

ChatGPT & Co: LLM Benchmarks for October

Find out which large language models outperformed in the October 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 12/4/24

ChatGPT & Co: LLM Benchmarks for November

Find out which large language models outperformed in the November 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 1/7/25

ChatGPT & Co: LLM Benchmarks for December

Find out which large language models outperformed in the December 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 2/3/25

ChatGPT & Co: LLM Benchmarks for January

Find out which large language models outperformed in the January 2025 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 10/1/24

ChatGPT & Co: LLM Benchmarks for September

Find out which large language models outperformed in the September 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Referenz 10/29/21

Standardized data management creates basis for reporting

TIMETOACT implements a higher-level data model in a data warehouse for TRUMPF Photonic Components and provides the necessary data integration connection with Talend.

Blog 5/17/24

8 tips for developing AI assistants

8 practical tips for implementing AI assistants

Blog 5/16/24

Common Mistakes in the Development of AI Assistants

We share how failures when implementing AI occurr and what can be learned from them for future projects: So that AI assistants can be implemented more successfully in the future!

Blog 5/16/24

Common Mistakes in the Development of AI Assistants

We share how failures when implementing AI occurr and what can be learned from them for future projects: So that AI assistants can be implemented more successfully in the future!

Blog 5/17/24

8 tips for developing AI assistants

8 practical tips for implementing AI assistants