Machine Learning Pipelines

Machine Learning (ML) is centered around constructing models capable of automating diverse tasks. Such tasks can vary from detecting fraudulent transactions and identifying parking lots in satellite imagery, to translating text between languages or offering pricing suggestions for cargo transportation.

Although certain tasks may be performed better by humans, machines excel at executing them rapidly, continuously and without getting bored.

As a programmer, you can think of a ML model as a function that picks up arguments and returns with an answer, similar to traditional programming. The distinction lies in the fact that instead of being coded by a human it is rather a black box derived from extensive data. The model includes a significant amount of data encapsulated by code to interpret that information into a function with multiple variables. 

This analogy draws a parallel between machine learning pipelines and continuous integration / delivery pipelines in software development. Both types of pipelines compile source code into executable artifacts.

There are exceptions to this though, such as: 

●      In software we mostly work with codebases, whereas in machine learning models and big amounts of data are being managed.

●      Software can be tested well - the build either passes or fails. Machine learning models on the other hand are always inaccurate to some degree.

●      Data can be wrong and can become outdated, as can models.

Let me give you an example of how models can become outdated. In 2020, all the models that suggested prices for delivering cargo between two locations started giving wrong answers. Why did this happen? It was because of Brexit. Businesses in the UK started stocking up on supplies before the borders were shut, which created a higher demand, leading to higher prices. Since the models were trained on past data, they didn't know how to handle this new situation.

As software engineers, we care about making sure our code works perfectly in every possible situation. On the other hand, data scientists must be okay with not knowing everything and dealing with differences in data. ML is about finding patterns in data, which can be challenging because it's not always clear what the data means. This makes machine learning more flexible for complex problems, but also harder to understand and fix if something goes wrong. 

Most problems that software engineers solve today will continue to be solved using traditional programming in the future. However, ML can be used to solve new types of problems that couldn't be solved before and can be a great addition to software development. As long as sufficient amounts of data are available and it has been tagged with a desired outcome.

What are machine learning pipelines?

Machine learning is a way of teaching computers to do things that are normally done by humans. It's like a set of instructions that the computer can use to learn and make decisions based on data. Machine learning pipelines are a series of steps that turn data into a trained and tested machine learning model. The pipeline involves getting data, changing the data to be good for training, creating a model, and packaging it so it can be used for a long time. The model can then be made available to others through an API.

A machine learning pipeline is like a big machine that takes in data and gives out predictions. It's made up of different parts, like the data that comes in, the way the data is changed so the machine can understand it, the machine learning model that does the thinking, and the output that the machine gives. All these parts work together to make sure the machine can make good predictions.

This is how machine learning pipelines could look like in a simple form:

  1. Download data from some source. Usually, it will be a set of datastore rows or records.

  2. Convert data to a format suitable for training: select features (arguments for the model), remove noise and bad records. Some fields in the dataset will be used as input and others will be specified as the desired output that we want to predict.

  3. Define the model format (smell the wind and say “this big equation with a lot of variables will get the job done”) and train the model on data (tweak formula variables in semi-random way until the model starts accurately guessing results given inputs).

  4. Package the model into a durable format (e.g., a Docker container with some binary blob).

  5. Optionally, deploy the model as a service with an API.

 

Normally these transformations are codified as workflows (workflow as code), versioned and deployed. In simpler projects, one can implement them with Bash or Python scripts. Larger projects and teams are well advised to use something that is better documented and based on conventions (for example via domain-specific language, or declaratives syntax).

Long story short: Machine learning pipelines are codified workflows that ingest data, transform, and derive reusable models from it. Their goal is similar to CI/CD pipelines in software engineering: automate, ensure repeatability and scale processes. Implementation details differ from CI/CD because machine learning pipelines work mostly with data.

Why are machine learning pipelines important?

In a regular system design, all the tasks would be performed together in a single program. This means that the same code would be used to collect, clean, model, and deploy the data. Because machine learning models generally have less code than other software programs, it makes sense to keep everything in one place.

In the ML pipeline, every step of your work process is made into its own separate service. This means that when you want to create a new workflow, you can select the specific parts you need and use them wherever you want. Any updates or changes made to a service will be done at a higher level, making it easier and more efficient to manage.

Machine learning pipelining can solve several problems. It allows for more efficient scaling of ML workflows. Rather than having to repeat the entire process for each new model, pipelining enables the reuse of the same data preparation and processing steps. Also, by allowing you to update individual components without affecting the rest of the pipeline, ML pipelining can help with version control.

Considering workflow efficiency: Breaking down a machine learning workflow into smaller, reusable components can save a lot of time. And last but not least, with machine learning pipelining, teams can collaborate on individual parts of a workflow without worrying about how their changes will affect the entire process.

Blog 12/19/22

Creating a Cross-Domain Capable ML Pipeline

As classifying images into categories is a ubiquitous task occurring in various domains, a need for a machine learning pipeline which can accommodate for new categories is easy to justify. In particular, common general requirements are to filter out low-quality (blurred, low contrast etc.) images, and to speed up the learning of new categories if image quality is sufficient. In this blog post we compare several image classification models from the transfer learning perspective.

Blog 11/9/23

Process Pipelines

Discover how process pipelines break down complex tasks into manageable steps, optimizing workflows and improving efficiency using Kanban boards.

Blog 9/16/21

Learning + Sharing at TIMETOACT GROUP Austria

Discover how we fosters continuous learning and sharing among employees, encouraging growth and collaboration through dedicated time for skill development.

Blog 8/11/22

Part 1: TIMETOACT Logistics Hackathon - Behind the Scenes

A look behind the scenes of our Hackathon on Sustainable Logistic Simulation in May 2022. This was a hybrid event, running on-site in Vienna and remotely. Participants from 12 countries developed smart agents to control cargo delivery truck fleets in a simulated Europe.

Blog 11/22/22

Part 1: Detecting Truck Parking Lots on Satellite Images

Real-time truck tracking is crucial in logistics: to enable accurate planning and provide reliable estimation of delivery times, operators build detailed profiles of loading stations, providing expected durations of truck loading and unloading, as well as resting times. Yet, how to derive an exact truck status based on mere GPS signals?

Blog 11/30/22

Part 2: Detecting Truck Parking Lots on Satellite Images

In the previous blog post, we created an already pretty powerful image segmentation model in order to detect the shape of truck parking lots on satellite images. However, we will now try to run the code on new hardware and get even better as well as more robust results.

Blog 6/27/23

Boosting speed of scikit-learn regression algorithms

The purpose of this blog post is to investigate the performance and prediction speed behavior of popular regression algorithms, i.e. models that predict numerical values based on a set of input variables.

Blog 12/7/22

State of Fast Feedback in Data Science Projects

DSML projects can be quite different from the software projects: a lot of R&D in a rapidly evolving landscape, working with data, distributions and probabilities instead of code. However, there is one thing in common: iterative development process matters a lot.

Referenz

Automated Planning of Transport Routes

Efficient transport route planning through automation and seamless integration.

Navigationsbild zu Business Intelligence
Service

Business Intelligence

Business Intelligence (BI) is a technology-driven process for analyzing data and presenting usable information. On this basis, sound decisions can be made.

Technologie Übersicht

Consulting for IBM products

IBM Software & Consulting with passion and experience – you can rely on us. Services relating to IBM Software Solutions have always been an integral part of our offer.

Navigationsbild zu Data Science
Service

AI & Data Science

We offer comprehensive solutions in the fields of data science, machine learning and AI that are tailored to your specific challenges and goals.

Headerbild zur Logistik- und Transportbranche
Branche

AI & Digitization for the Transportation and Logistics Indus

Digitale, transparente Prozesse und automatisierte Optimierung helfen Logistikunternehmen, Kosten und Leistung besser auszubalancieren, für eine starke, zukunftsfähige Rolle als Partner der Wirtschaft

Branche

Digital transformation in public administration

The digital transformation will massively change the world of work, especially in public administration. We support federal, state and local authorities in the strategic and technical implementation of their administrative modernisation projects.

Schild als Symbol für innere und äußere Sicherheit
Branche

Internal and external security

Defense forces and police must protect citizens and the state from ever new threats. Modern IT & software solutions support them in this task.

News

Proof-of-Value Workshop

Today's businesses need data integration solutions that offer open, reusable standards and a complete, innovative portfolio of data capabilities. Apply for one of our free workshops!

Headerbild für lokale Entwicklerressourcen in Deutschland
Branche

On-site digitization partner for insurance companies

We find the optimal IT solution for insurance companies! ► Everything from a single source ✓ Personally on site ✓ Arrange a personal exchange now.

Branche 2/20/25

Insurance

Insurance companies live by making a promise to people - and that promise is security.

Blog 11/12/24

ChatGPT & Co: LLM Benchmarks for October

Find out which large language models outperformed in the October 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.

Blog 12/4/24

ChatGPT & Co: LLM Benchmarks for November

Find out which large language models outperformed in the November 2024 benchmarks. Stay informed on the latest AI developments and performance metrics.